Answer any THREE Questions.

 $[3.X\ 10 = 30]$

6. Determine the analytic function whose real part is

$$x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

- 17. Find the poles and residues at the poles for the function $\frac{z+1}{z^2-zz}$
- 18. Derive the covariant form of Maxwell's equation.
- 19. List the 5 simple rules to work out the character table taking (D_3) the group of equilateral triangle as an example.
- 20. Show that the normal distribution is a limiting case of binomial distribution

G.T.N. ARTS COLLEGE (AUTONOMOUS)

Reg. No.

END SEMESTER EXAMINATION - APRIL 2019 (Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

Course Code: 18PPHC21 Programme: M.Sc. Physics

Course Title: Mathematical Physics - II

Date: 02.05.2019 Time: 10.00.a.m. to 1.00 p.re

Max Marks: 75

10 X L=

Answer ALL the Questions. Choose the Correct Answer SECTION - A

1. The function $f(z) = z^3$ with z = x + iy is analytic. [b] for positive values of x

[a] in entire z-plane

[d] on the line y = 1 only

[c] only at x = 0, y = 0 only

- The function $f(z) = |z|^2$ with z = x + iy is
- [a] differentiable for all avlues of x and y [b] differentiable for only positive values of x and y
- [c] differentiable at x = 0,y = 0 only
- [d] differentiable only at x = 1 and y = 1

[c] $e^{3i\pi/2}$ [d] $e^{-i\pi/2}$ [f a function f(z) has poles only in the finite part of the z - plane there.] The residue of the function $f(z) = z^2/z^2 + 4$ at z = 2i is $[d] e^{-i\pi/2}$

function is said to be [a] Laurent's function

[b] Liouville's function

[d] Meromorphic function

[c] Residue function

[OR]	[a] 1/4 [b] 1/5 [c] 1/6 [SECTION – B Answer ALL the Questions. (i) Define an analytic function. (ii) Show that $\frac{d}{dz}(Z^2) \stackrel{\mathcal{Z}}{=} 2Z$.	s, one is drawn at re-	[c] AB [d] A/B If any two elements A and B of a group conumute, then the group is said to be [a] cyclic group [c] non – abelion group [d] non – abelion group	If A and b are two elements of a group G under multiplication, then the element of the group g must be [b] A - B [b] A - [c] n ² - [d] 2 ⁿ [c] n ² - [d] 2 ⁿ [b] A - B	"r delta &", in n –dimensiona [b] 1 of rank 2 in n dimensional s
h) The radius of a wire is measured in cm as 0.17, 0.15, 0.18, 0.19, 0.16	a) 95% of the students who pass the course also passed the b) 96% of the students who pass the course also passed the preliminary text. c) 25% of the students who fail the course passed the preliminary test. What is the probability that a student who has failed the preliminary test will pass the course? [OR]	b) State th (i) Cont 15. a) (i) Stat (ii) A beginni after se	14.	13.	[d] n [2 a) Find the residue of $\frac{\sin Z}{1-Z^4}$ at $Z=i$. [OR] components. b) Find $R(-1/2)$ and $R(5)$ for the function

b) The radius of a wire is measured in cm as 0.17, 0.15, 0.18, 0.19, 0.16, 0.17. Find the mean radius and standard deviation.

b) Use C-R condition to find out whether the function cosh z is analytic.

Answer any THREE Questions. SECTION - C

16. Verify divergence theorem for the vector

$$\tilde{A} = x^2 (1 + y^2) + z^2 \tilde{k}$$
 taken over the cube $0 \le x, y, z \le 1$.

17. Find the Eigen values and normalized Eigen vector of the matrix.

18. Obtain Fourier series for the expansion $f(x) = x \sin x$ in the interval -

$$\pi < x < \pi$$
. Hence deduce that $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{13} - \frac{1}{35} + \frac{1}{57}$

If n is a positive integer, prove that

$$\int_{-1}^{+1} p_n(x) (1 - 2xz + z^2)^{-\frac{1}{2}} dx = \frac{zx^n}{2n+1}$$
 and hence, making use of Rodrigue's formula, deduce that

$$\int_{-1}^{+1} (1-x^2)^n (1-2xz+z^2)^{-n\cdot(1/2)} dx = \frac{2^{2n+1}(n!)^2}{(2n+1)}$$

20. Derive the solution of Laplace's Equation in spherical polar coordinate

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION - APRIL 2019

Programme : M.Sc Physics

Course Title: Mathematical Physics -I Course Code: 18PPHC11

> Max Marks: 75 Time: 2.00 p.m. to 5.00 p.m.

Date: 02.05.2019

Choose the Correct Answer. Answer ALL the Questions. Section - A

1. The projection of vector d = 2i - 3j + 5k on the vector b = i + 2j + 2i

[b] 8/3 [c] 8/7

2 A vector field which can be expressed as negative gradient of a scalar

is called

[a] Lamellar field

[c] Non-conservative field

[b] Non- Lamellar field

[d] conservative field

ب If r is a position vector, then curl r is

[a] 0

[c] r⁻²r

6

4. If $F = (3x - 4y + az)\vec{i} + (cx + 5y - 2z)\vec{j} + (x - by + 7z)k$ irrotational then the value of u. b.c.15

[a] 1, 2,-4 [c] 2. 1.-4

> [] 4. 2.

The average of the function $f(x) = \sin x$ in the interval $(0, \pi)$ is

Fourier transform of which of the following functions does not exist?

[c] $1/\pi$

[d] $4/\pi$

The incorrect equation among the following is

 $[b]xe^{-x^2}$

[a] $P_0(x) = 1$

[c] $P_n(-x) = (-1)^{n+1} P_n(x)$

[d] $P_1(x) = -1$ [b] $P_1(x) = 1$ [c] $e^{x^{\prime}}$

[d] e^{-x^2}

 $J_3(x)$ can be written in terms of $J_0(x)$ as

[c] $(8x^2 + 1)J_1 - 4x^{-1}J_0$

 $[a] J_0(x)$

[b] $(8x^2-1)J_1-4x^{-1}J_0$

[d] $(8x^2-1)J_1+4x^{-1}J_0$

 $(x^2)^2 + 5xD = 4$) y = 0 is a homogeneous linear differential equation of

(a) truc

[b] false

[c] partially true

[d] None

10. Which of the following is an exact differential equation?

[a] dy/dx = 2x-y/x+2y-5

 $[c] xdy - ydx = xy^2 dx$

[d] None -

[b] $(y^2e^x + 2xy)dx-x^2dy = 0$

11. a) Using Stokes theorem, prove the following relation Answer ALL the Questions SECTION - B

 $[5 \times 7 = 35]$

i) $\iint_{S} ds \times \nabla \Phi = \oint \Phi dl$

ii) $\iint_{S} (ds \times \nabla) = \oint dl \times F$

[OR]

b) Express the velocity and acceleration of a particle in cylindrical

coordinates.

12. a) (i) outline the Schmitt's orthogonalisation. (ii) State and prove Schwarz inequality

b) Find the characteristic equation of the following matrix and verify the

Cayley - Hamilton theorem

13. a) Expand the function $f(x) = \sin x$ as a cosine series in the interval $(0,\pi)$.

[OR]

b) Find the Fourier transform of e^{-r^2/a^2} where a is a constant and

$$r = \sqrt{x^2 + y^2} z^2$$

14. a) Prove that m is an integer less than n, then

$$\int_{-1}^{1} x^m P_n(x) dx = 0$$

 $\int_{-1}^{+1} x^m p_n(x) dx = 2^{n+1} (n!)^2 / (2n+1)!$

[OR]

15. a) Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$; subject to coordinates b) Prove the recurrence formula for Hermite polynomials.

U(0, y) = u(1, y) = u(x, 0) = 0 and

 $U(x, 0) = \sin \frac{x\pi x}{l}.$

[OR]

b) Give brief explanation about solution of Laplace's Equation in

Cartesian coordinates

٢

SECTION - C

- Answer any THREE Questions.
- 17. Find the poles and residues at the poles for the function $\frac{z+1}{2^2-2z}$ 16. Determine the analytic function whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$
- 18. Derive the covariant form of Maxwell's equation.
- 19. List the 5 simple rules to work out the character table taking (D_3) the group of equilateral triangle as an example.
- 20. Show that the normal distribution is a limiting case of binomial

G.T.N. ARTS COLLEGE (AUTONOMOUS) Affiliated to Madural Kamaraj University (Accredited by NAAC with 'B' Grade)

Reg. No.

Programme: M.Sc. Physics END SEMESTER EXAMINATION - APRIL 2019

Course Title: Mathematical Physics - II Course Code: 18PPHC21 SECTION - A Date: 02.05.2019 Max Marks :75 Time: 10.00 a.m. to 1.90 ?

1. The function $f(z) = z^3$ with z = x + iy is analytic. [a] in entire z-plane Answer ALL the Questions. Choose the Correct Answer. [d] on the line y = 1 only [b] for positive values of

[c] only at x = 0, y = 0 only

2. The function $f(z) = |z|^2$ with z = x + iy is

[b] differentiable for only positive values of x and y [a] differentiable for all avlues of x and y [c] differentiable at x = 0, y = 0 only

3. The residue of the function $f(z) = z^2/z^2 + 4$ at z = 2i is If a function f(z) has poles only in the finite part of the $z - \rho l.me$, then [a] $e^{i\pi/2}$ [d] differentiable only at x = 1 and y = 11dle -11/

function is said to be [a] Laurent's function [c] Residue function Idl Meromorphic han [b] Liouville's tunener

distribution.

Answer ALL the Questions. SECTION - B $[5 \times 7 = 35]$

0. In a given race, the odds in favor of horses A,B,C are 1:3, 1:4,1:5,1:6

[c] 1/169

[d] 25/169

15.

(a) 1/13 . [b] 2/13

respectively. The probability that the horse C win the race is

[a] 1/4

[b] 1/5

[c] 1/6

[d] 1/3

(i) Define an analytic function.

(ii) Show that
$$d/_{dZ}(Z^2) = 2Z$$
.

[OR]

b) Use C-R condition to find out whether the function cosh z is analytic.

13. a) Briefly describe the concept of sub groups. Also explain the two trivial

- b) Prove that the covering operations of an equilateral triangle form a group homomorphic onto the group of elements (1,-1).
- a) Explain the occurrence of tensor in physics taking electrical
- (i) Contravariant tensor (ii) Covariant Tensor (iii) Mixed Tensor
- a) (i) State the conditional probability of Baye's formula
- after several years beginning of a certain course. The following data are accumulated (ii) A preliminary text is customarily given to the students at the
- a) 95% of the students pass the course, 5% fail
- b) 96% of the students who pass the course also passed the preliminary text.
- c) 25% of the students who fail the course passed the preliminary test. What is the probability that a student who has failed the preliminary test will pass the course.

b) The radius of a wire is measured in cm as 0.17, 0.15, 0.18, 0.19, 0.16 0.17. Find the mean radius and standard deviation

SECTION - C $3 \times 10 = 30$

- Answer any THREE Questions.
- 16. State and describe the principle of least action. 17. Define differential scattering cross section. Explain the Rutherford's alpha particle scattering to find scattering cross section
- Discuss briefly about Liouville's theorem.
- Explain and deduce the Eigen value equation and the principle axes
- 20. Formulate the Kepler's problem by Hamilton Jacobi's method

transformation.

T.N. ARTS COLLEGE (AUTONOMOUS (Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade).

Reg. No:

END SEMESTER EXAMINATION - APRIL 2019

Course Code: 18PPHC12 Course Title: Classical Mechanics Programme : M.Sc. Physics Date: 04.05.2019 Max Marks: 75 Time: 2.00 p.m. to 5.00 p.m.

	:
4	In the "D"Al
	A.d.
	Alembert's I
	's principl
	le,

Choose the Correct Answer. Answer ALL the Questions.

SECTIÓN – A

[10 X 1 = 10]

- [a] Applied forces do not appear
- [b] Dynamic system is not included
- [c] Forces of constraints do not appear
- [a] Conservative and non-holonomic systems

2

The Lagrange's equation of motion $\frac{d}{dt} \left(\frac{\partial L}{\partial q_{s,t}} \right)$

 $-\left(\frac{\partial L}{\partial q_i}\right) = 0$

can be used for.

[d] Forces of constraints appear

- [b] Conservative and holonomic systems
- [c] Non- conservative and holonomic systems [d] Non- conservative and non-holonomic systems
- Choose the odd one which is not related to the Rutherford formula for scattering cross section. [a] Square of the charge on the particle

ω ·

[b] Inversely proportional to the square of the initial kinetic energy of

[c] Gauss method	[a] Heun's method	Runge -kutta second order method also called	[c] circular fit	[a] least square fit		Fitting function $f(x)$ minimized to sum of sauares of the deviations called	[d] $f(x) = a_1 - a_2 x$	[c] $f(x) = a_1 - a_2 x - a_3 x - a_4 x$	[b] $f(x) = a_1 - a_2 x - a_3 x^2 - a_4 x^3$	[a] $f(x) = a_1 + a_2x + a_3x^2 + a_4x^3$	8. Gauss legendre formula is	[c] quadration	[a] differentiation	Formula for numeric integration is called	[c] 1.0128	[a] 1.0118	The value of cos 0.16 is	[c] short interpolation	[a] interpolation	is called	If the point y is in outside the interval (x_1, x_n) then the estimation of $f(y)$
[d] Rampson method	[b] Iterative method	called	[d] edge fit	[b] curve fit	•	of sauares of the deviations called			χ ³	χ3		[d] intergration function	[b] interpolation	d	[d] 1.228	[b] 1.0218		[d] long interpolation	[b] extra interpolation		(x_n, x_n) then the estimation of $f(y)$

Answer ALL the Questions. SECTION - B

11. a) Find the real root of the equation $x^3 + x^2 = 1$ by iteration method.

[OR]

. b) Find a real root of equation $x^3 - x - 11 = 0$ by Bisection method.

12. a) Describe the Algorithm to implement the Gauss- Seidal method.

[OR]

b) Discuss the comparison of direct and iterative methods.

13. a) Using Newton's forward interpolation formula, find the value of y when x=2

from the following tabulated values of the function. 0.4384

Y 0.3420

0.4848

b) Write an Algorithm to discuss the linear regression method.

[OR]

[OR]

14. a) Derive the formula for Numerical integration . Discuss in detail.

b) Using Euler's method, find y(0.4) given $\frac{dy}{dx} = xy$, y(0) = 1.

15. a) Write down the solution of Second order differential equation(Runge

[OR]

Kutta method).

b) Use the Trapezoidal rule with h=1/2, h=1/4 to Evaluate $\int_0^1 f(x) dx$ and

the data given below. X 0.000 Y 0.79788 0.773340.2500.70413 0.5000.60227 0.750 0.48394.1.0000

Reg. No:

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION - APRIL 2019

Date: 07.05.2019

Time: 10.00 a.m. to 1.00 p.m.

Programme : M.Sc. Physics

Course Code: 18PPHC23

Course Title: Statistical Mechanics &

Max Marks :75

Thermodynamics

Answer ALL the Questions. SECTION - A

 $11 = 1 \times 011$

Choose the Correct Answer.

)			:-
2 A system is said to be in a state of unstable equilibrium when	[c] transfer of mass	[a] the transfer of heat	1. Change of heat depends on
instable equilibrium when	[d] the thermodynamic State	[b] change of temperature	

[c] dG>0,dF>0,ds>0 [a] dG<0,dF<0,ds<0

> [d] dG>0.dF>0,ds<0 [b].dG<0,dF<0,ds>0

At equilibrium the total Gibb's free energy for all phases is

4. The temperature at which the solid melts at 1 atm is called [a] Minimum [c] Infinity

[b] Maximum

[d] Zero

[a] Normal boiling point

[c] Normal freezing point

[b] Normal melting point

[d] Normal thermal point

	nenomenon in gas parucies.	ion of Brownian motion	[c] mesons [d] none of the above	9. The particle obeys with integral multiple of 1 are [b] Fermions	•	[a] photon gas [b] denser gas	8. In a equilibrium condition Black body Radiation is considered as		[a] 4 [b] 3	7. The number of independent properties required to completely in the	[c] magnitude			ot of both a particle, inc	•. *	$[a] \rho \lambda^3 = 1$ $[b] \rho \lambda^3 >> 1$	5. The condition in which the quantum statistics reduces to classical statistics
18. Explain Liouville's theorem and its consequences.	I/. Write notes on surface tension prenomenon and representations		SECTION – C [3 X $10 = 30$] Answer any THREE Questions.	b) Explain older oorly maintenance.	[OR]	15. a) Describe the principle of equipartition of energy?.	b) Brief thermodynamic properties of a system.	14. a) Write a note on B.E. Statistics. [OR]	b) Explain macrostates and microstates.	[OR]	a) Brief energy states and energy levels.	L) What is a reversible voltaic cell? Explain.	12. a) Brief Phase rule. What does happen at triple point of water	b) Explain phase transition.	[OR]	11. a) Write a note on combined first and second laws of thermodynamic	SECTION – B Answer ALL the Questions. $S \times 7 = 35$

						. •
3. The force on a wire of length L with current I in a magnetic field of induction B perpendicular to the wire-length is given by [a] BIL [b] Ll [c] BI [d] BL	 A point dipole has an electric field due to [a] it's charges [c] the extended charge distribution [] 	The negative gradient of electrostatic potential is [a] Potential energy [c] Surface charge density [d] Electrostatic potential is	SECTION – A Answer ALL the Questions. Choose the Correct Answer.	Programme: M.Sc. Physics Course Code: 18PPHC22 Course Title: Electromagnetic Theory	G.T.N. ARTS COASTINATED (Affiliated to Ma (Accredited by END SEMESTER EX.)	Reg. No:
th current I in a magnetic field of length is given by [c] BI [d] BL	[b] it's dipole moment n [d] electric flux	[b] Volume charge density [d] Electric field	SECTION – A Answer ALL the Questions. Choose the Correct Answer.	Date: 04.05.2019 Time: 10.00 a.m. to 1.00 p.m ory Max Marks: 75	G.T.N. ARTS COLLEGE (AUTONOMOUS) (Affiliated to Madural Kamaraj University) (Accredited by NAAC with 'B' Grade) END SEMESTER EXAMINATION - APRIL 2019	5:

5. Ampere's circuital law can be compared in parallel to

[b] Biot-Savart-law

[d] weber per (meter)² [b] newton per meter

4. One tesla is ___

[a] newton per coulomb

,	In tree space, the divergence of magnetic induction is a small	_	12 a) Obtain an expression for force on a current carrying
	e con or magnetic modellon		CO Procession and the second s
	[b] magne	[b] magnetic potential	[OR]
	[c] magnetic flux [d] magne		b) State and explain the Biot-Savart law.
	The relation between the wavelength λ and wave number k is given by	e_number k is_given by 13. a) Explain how	ow Maxwell fixed Ampere's law.
			[OR]
	[a] $k = (\lambda / 2\pi)$ [b] $k = 2\pi \lambda$		b) Obtain expressions for Maxwell's equations in ele
	[c] $(1/k) = (\lambda/2\pi)$ [d] $(\lambda/k) = 2\pi$		14. a) Derive the wave equations for \overline{E} and \overline{B} in vacuum.
	So the average power per unit area transported by an electromagnetic wave		[OR]
	is called		b) Obtain the Maxwell's equations for electromagn
	[b] Intensity	sity in a linear media.	r media.
	[c] Amplitude [d] Frequency	,	15. a) Discuss in detail about the Gauge Transformation
	Lienard-wiechert potentials refer to		[OR]
	[a] moving point charge [b] static J	[b] static point charge b) Derive the	ne time-dependent generalization of Co

[c] the Poisson's operator Answer ALL the Questions. SECTION - B [d] the electric field intensity $[5 \times 7 = 35]$

10. The divergence of the gradient is called

[c] point dipole

[d] multipoles

[a] the electrostatic potential

[b] the laplacian operator

11 a) Solve the Laplace's equation in spherical polar coordinates for a problem of a dielectric sphere in a uniform electric field.

[OR]

b) List out the applications of Gauss's law.

a) Obtain an expression for force on a current carrying conductor.

OR.

- b) State and explain the Biot-Savart law
- a) Explain how Maxwell fixed Ampere's law.
- b) Obtain expressions for Maxwell's equations in electrodynamics. OR
- b) Obtain the Maxwell's equations for electromagnetic waves propogate

a) Discuss in detail about the Gauge Transformation. b) Derive the time-dependent generalization of Coulmb's law and Biot-Savart law, to which it reduces in the static case. in a linear media [OR]

SECTION - C

 $[3 \times 10 = 30]$

Answer any THREE Questions.

- 16. Write a short notes on i) The electric field inside a dielectric and ii) Gauss law in the presence of dielectric.
- 17. Derive an expression for magnetic vector potential.
- 18. Obtain an equation for energy stored in the magnetic field.
- 20. Derive the equation for Lienard-Wiechart potentials. 19. Discuss the propogation of electromagnetic waves in conductors.

G.T.N. ARTS COLLEGE (AUTONOMOUS Reg. No:

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade) RIL 2019

Answer ALL Choose the C The input impedance of a JFET is	Programme: M.Sc. Physics Course Code: 18PPHC13 Course Title: Applied Electronics	END SEMESTER EXA
ION – A the Questions. orrect Answer: that of a	Time: 2.00 p.m. to 5:0 Max Marks: 75	(Accredited by MATION - APRIL 2015 END SEMESTER EXAMINATION - 07.05.2019

[c] more man	fal mare than	[a] equal to	to the second to	transistor.
i : : : discouit due to	[u] 110110	fall none of the above	[0] Jess dian	n-1 loca than

MOSFET has greatest application in digital circuit due to

2.

		-		
3. The differential gain is	[d] All of the above	[c] Small amount of space it takes on a chip	[b] Less noise	[a] Low power consumption

	4.		
;	4. The op-amp can amplify	oltage	•
101 arc. arb	rel de signal only	ldj about 199	[6] ser) :-

THE SPPINE

[b] very low

b) Describe how the slew rate of an Operational amplifier can be	[OR]	(2. a) Draw a complementary Emitter-follower circuit. Discuss in detail.	b) Explain how FET can act as an amplifier:	[OR]	characteristics.	(1. a) Sketch the basic structure of a n channel FET.	SECTION – B Answer ALL the Questions.	[a] 2 [b] 3	10. How many types of RAMS are?	[a] RAM [b] FPROM	9. Which of the following is not a type of memory?	[a] 5 [b] 10	8. A decimal counter has	[a] 1 [b] 2	7. The truth table for an S-R flip flop has how many valid entries?	[c] TV receivers	[a] Radio receivers	Hartley oscillator is commonly used in			oduces
perational amplifier can be		lower circuit. Discuss in detail.	plifier:		1	annel FET. Explain its drain	- B [5 X 7 = 35] Questions.	[c] 4 [d] 5		[c] EEPROM [d] ROM	f memory?	[c] 15 [d] 20	states.	[c] 3	how many valid entries?	[d] none of the above	[b] Radio transmitters		[d] none	[b] undamped	oscillations.

13. a) Draw the circuit of square and triangular wave generators. Explain in

detail.

[OR]

- b) Describe the principle and working of a IC555 timer.
- 14. a) Discuss the system for 4 bit odd parity checker. Explain the operation

of the system.

OR!

- b) Define a Multiplexer. Draw a logic diagram of 4-to-1 line Multiplexer. Explain in detail.
- a) Draw a dynamic MOS shift Registers. Briefly explain its operation.
 [OR]

detail $\mathbf{SECTION} - \mathbf{C} \qquad [\mathbf{3} \times \mathbf{10} = \mathbf{30}]$

b) How does a Microcomputer differ from a Microprocessor? Discuss in

- Answer any THREE Questions.

 16. Draw the circuit symbols used to MOSFETS. Explain
- (a) Enhancement mode MOSFET (b) depletion mode MOSFET
- 17. Discuss the measurements of OP-Amp parameters and explain its frequency response and compensation.
- 18. Sketch the phase shift oscillator using (a) an Op-Amp and (b) a JFET and explain their working.
- 19. Draw a clocked J-K flipflop system. Give its truth table and explain its operation. What is race around problem?
- 20. Write a note on CCD (Charge Coupled Device) structures.

improved.

C A SOUTH TOTAL S		
END SEMESTER EXAMINATION - APRIL 2019	G.T.N. ARTS COLLEGE (AUTONOMOUS) (Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)	Reg. No:

Course Title: Nano Physics Course Code: 18PPHE21 Programme : M.Sc. Physics

1. Nanosize powder particles are also called Choose the Correct Answer.

Answer ALL the Questions. SECTION - A

Time: 10.00 a.m. to 1.00 p.na Max Marks:75

 $10 \times 1 = 10$

Date: 09.05.2019

2.		
2. Example of quasi-2 dimensional is _	[c] nanoparticles	[a] nanotubes
	[d] nanodots	[b] nanostructures

[a] nanowires

[d] aerogels

[b] quantum wells

[a] 10nm	Themesoscopic range is [a] 10-100nm [c] 1-10000nm	[c] quantum dots
[b] 10000nm	[b] 10-1000nm [d] 10-100000nm	[a] acrogers

12		=				10			· .c			1-				J		9.5
	[OR] b) Explain imaging structures of scanning probe microscopy	a) Explain the detection of secondary and backscattered electrons scanning electron microscope.	SECTION – B Answer ALL the Questions. $[5 \times 7 = 35]$	[c] a surface [d] a core	[a] a thermal [b] an electrical		well]	ell is	[c] surface [b] bottom	1	Most of the atoms in nanoclusters are	[c] 3 [b] 2	layer	Nanoparticle consists of [d] semiconductors	[c] thin films [b] cantelevers	[a] rigid bodies	Vapour phase deres:

13. a) Explain plasma are discharge for deposition of carbon nanotube.

[OR]

- b) Explain briefly the film deposition in a DC glow discharge.
- 14. a) Explain the electronic structure of nanoparticles.

OR

- b) Explain the application of carbon nanotubes in computers.
- 15. a) Explain the steps in the formation of quantum wire or quantum dot.

[OR]

b) Explain the size effect of quantum nanostructure.

SECTION - C

 $[3 \times 10 = 30]$

Answer any THREE Questions:

16. Explain the working principle of Transmission Electron Microscope

- 17. Discuss imaging modes and measuring images with AFM.
- 18. Explain the formation of nanomaterial by Sol-gel method.
- 19. Explain the fabrication of carbon nanotubes.
- 20. Explain the formation of microelectromechanical systems.

Ħ.

preparation.

b) Explain photolithography and its limitations.