16. State and prove Cauchys integral theorem. SECTION - C

Answer Any THREE Questions. $[3 \times 10 = 30]$

17. a) H_{OW} will you find the residue when f(z) has a pole of order n. b) Evaluate the definite integral by the use of residue

theorem
$$I = \int_{0}^{2\pi} \frac{d\theta}{5 + 4\cos\theta}$$

- 18. Define a) equality of tensor, b) null tensor, c) addition and subtraction of tensors, d) inner and outer product of tensors.
- 19. What do you mean by an unitary group? Also arrive at the irreducible representation of character of SU(2)
- 20. Show that the normal distribution is a limiting case of binomial

Reg. No:

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION - NOVEMBER 2019

Programme: M. Sc., Physics

Date: 13.11.2019

Course Code: 18PPHC21

Time: 1.00p.m. to 5.00p.m.

Course Title: Mathematical Physics - II Max. Marks:75

SECTION - A

[10 X 1 = 10]

Answer ALL the Questions.

Choose the Correct Answer

1. The value of the integral $I = \frac{1}{2\pi i} \int_{c} \frac{dz}{(z-3)}$ where 'c' is a circle, then |z|=1

[a] 1

[6] 0.5

[d] zero

2. Which of the following is true for the given function $u = x^2 - y^2$ and

$$V = \frac{y}{x^2 + y^2}?$$

- [a] both function u and v are harmonic
- [b] function u is harmonic but v is not
- [c] function v is harmonic but u is not
- [d] both functions u and v are not harmonic
- 3. If a function f(z) has a simple pole of order n at z=z, then the function
- f'(z)|f(z) has [a] no pole [c] pole of order (n-1)

[d] an essential singularity [b] a simple pole

9. The probability that a leap year selected at random will contain 53 sundays 10. In a given race, the odds in favour of horses A,B,C are 1:3, 1:4, 1:5, 1:6 8. In the group $G = [E, A, A^2]$, the element conjugate to A^2 is 4. If C is a circle |Z-1|=3 in the complex plane, then $\int \cos z|_{2-z}=3$ is equal 7. Two groups $G = (G_1, G_2, \dots, G_n)$ and $H = (H_1, H_2, \dots, H_n)$ are isomorphic if 6. The differentiation of a scalar with respect to variable x^{μ} results in 5. Moment of inertia is a respectively. The probability that the horse C win the race is · [c] 1/3 [a] 1/4[a] 1/2[C] A [a]E[a] $G_1G_2 = H_1H_2$ [c] a covariant vector [b] vector [d] a tensor of high rank [c] a tensor of rank 2 [a] scalar [c] $-2\pi i$ [b] 1/5 [d] 1/6 $[d] \frac{G_1}{G_2} = \left(\frac{H_1}{H_2}\right)$ $[d] A^{-2}$ [d] 53/366 [b] 3/10 [d] zero [b] $G_1H_1 = G_2H_2$ [d] a tensor of rank 2 [b] $-\pi i$ [b] a contravariant vector

SECTION - B

Answer ALL the Questions.

11. a) State the theorem which indicate whether a complex function is analytic

b) Find the real and imaginary part of u(x, y) and v(x, y) of

$$\sqrt{z} \left[z = x + iy \right].$$

Also comment on the sign of u and v.

12. a) How will you find the residue of a simple pole at $Z=Z_{\rm 0}$.

Find
$$R(-1/2)$$
 and $R(5)$ for $f(z) = \frac{1}{(2z+1)(5-2)}$

b) Find the Laurent series of the function $\frac{1}{z(z+1)}$ about Z=0 and hence

find the residue

13. a) Briefly describe the concept of a group, also an abelian group with an example

b) Prove that the group of order 3 is always cyclic and order 4 may or may not be cyclic

OR

14. a) What are covariant vectors?

- b) What are contravariant vectors?
- 15. a) i) What do you mean by a sample space ii) define probability, and iii) construct the sample space if the coin is tossed three times

b) The radius of a wire is measured in cm as 0.17, 0.15, 0.18, 0.19, 0.16, 0.17. Find the mean radius and the standard deviation.

- b) Explain the state of electromagnetic theory represents the divergence and curl of magnetic and electric fields before Maxwell.
- 14. a) Obtain the wave equation for propagating in one dimension.

[OR]

- b) Derive the expressions for electric and magnetic fields in a monochromatic plane wave.
- 15. a) Determine the Coulomb gauge and Lorentz gauge by the distribution of charge.

[OR]

b) Obtain the expressions for scalar and vector potentials.

SECTION - C $3 \times 10 = 30$

Answer Any THREE Questions

- 16. Obtain the solutions to Laplace equation in spherical coordinates.
- 17. Describe the magnetic scalar potential and magnetic pole density.
- 18. Reformulate the Maxwell's equations for the materials subjected to electric and magnetic polarization.
- 19. Derive an expression for reflection coefficient and the transmission coefficient at normal incidence.
- 20. Solve the inhomogeneous wave equation for specified sources for using · the retarded potentials.

Reg. No:

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

END SEMESTER EXAMINATION - NOVEMBER 2019

Course Code: 18PPHC22 Programme: M. Sc., Physics Course Title: Electromagnetic Theory Date: 15.11.2019 Time: 2.00p.m. to 5.00p.m.

SECTION - A

Max. Marks:75

 $[10 \times 1 = 10]$

Answer ALL the Questions.

Choose the Correct Answer

1. The integral of the normal component of electric field over a closed surface is

- [a] total charge enclosed by the closed surface
- [b] surface charge density
- [c] electric flux
- [d] electric potential
- Poisson's equation gives

2.

[c] gradient of the electric field

[a] gradient of the potential

- [b] Laplacian of the potential
- [d] Laplacian of the electric field

12.	[c] $1/\varepsilon_0\mu_0$ [d] $1/\sqrt{\varepsilon_0\mu_0}$
	[a] $1/\varepsilon_0$ [b] $1/\mu_0$
	of electromagnetic waves in v
=	V.
	[a] bound charges [b] bound charge density
,	Magnetization results in
	[d] zero
	[c] surface charge density
	[b] volume charge density
	[a] the ratio of charge density
10.	. The divergence of an induced electric field is equal to
	[d] electric and magnetic forces on a moving charge
	[c] electric force on a moving charge
,	[b] magnetic force on a moving charge
	[a] electric force on a charge
9	Lorentz force refers to
	[d] Tesla meter
	[C] Tesla per meter
	[0] Newton-second-meter per coulomb
	[d] Newton-second per coulomb-meter
)	

fall linear motion of charge when co-	- 8. Bound current is due to	

- [a] Illnear invuoir e-
- [b] magnetic polarization
- [c] free charges
- [d] magnetic potential
- . Gauge transformations refer to _____
- [a] changes in electric field vector
- [b] changes in magnet field vector
- [c] charges in potentials alone
- [d] changes in potential and area vector
- 10. The advantage of Coulomb gauge is _____
- [a] scalar potential is easily calculated
- [b] vector potential is easily calculated
- [c] area vector is easily calculated
- [d] the charge distribution can be measured

SECTION - B

 $5 \times 7 = 3$

Answer ALL the Questions.

11. a) Explain the multipole expansion of electric fields.

[OR]

- b) Write a short note on polarization.
- 12. a) Give the applications of Ampere's law.

[OR]

- b) Explain i) Magnetic flux ii) Magnetization?
- 13. a) State and explain the Faraday's law of electromagnetic induction.

16. Brief about phas	
se (ra	
Answer Any THREE Questions, institions,	SECTION - C
tion».	

 $|3 \times 10 - 30|$

(Affiliated to Madural Namary)

T.N.	
T.N. ARTS COLLEGE (AUTONOMOUS)	Reg. No:

Programme : M. Se., Physics Course Code: 18PPHC23 END SEMESTER EXAMINATION - NOVEMBER 2019 (Accredited by NAAC with 'B' Grade)

Date: 18.11.2019

20. Describe Debye's theory of specific heat capacity of solids.

19. Explain Bose-Einstein distribution function.

17. Explain the thermodynamics of magnetism.

18. Write a note on ensembles.

Choose the Correct Answer	Answer ALL the Questions.	SECTION - A	Course Code: 18PPHC23 Time: Course Title: Statistical Mechanics Max. 8 and Thermodynamics
Wer.	ons.	[01 = 1 X 01]	Time: 2,00p.m. to 5,00p.m. Max. Marks :75

1. Change of heat depends on

3. The unit of surface tension in CGS System is	[c] two	[a] four	2. Maxwell's equations consists of	[c] transfer of mass	[a] transfer of heat
GS System is	[d] one	[b] three	f equations.	[d] the thermodynamic state	[b] change of temperature

[c] Dynes/em

[d] Dynes /m

[b] Kg/cm

[a] N/m

	[d] Independent of T
	3
b) Explain Einstein's theory	[a] T
.01	of specific heat, at low temperature, specific heat is
15. a) Write a note on principle o	0 In Debuggary
b) Explain the partition functi	
10]	[a] 0
14. a) Brief about Fermi-Dirac sta	8. In Boxe Finetein statistical [d] partition function
b) Describe density of states.	[c] Bose - Firstein [b] Fermi - Dirac
[OF	l_Boltzman
13. a) Give an account on macrost	quantum state is
b) How does vapour pressure	7. The statistics that have no many in [d] AT+BT ³
or [or	2 + 12 T 3
12. a) Explain the phase equilibriu	[a] T ³
b) State and explain Nernst hea	6. Specific heat of motors [d] $\rho = 0$
[OR	[c] $\rho \lambda^3 <<1$ [b] $\rho \lambda^3 >>1$
11. a) Brief about Helmoltz and Gi	$\begin{bmatrix} a \end{bmatrix} 0^{3} = 1$
Answer A	isisisisisisis
SE	5. The condition in which is [d] neutrons
[c] state of occupancy	[c] electrons
[a] isolated state	[a] photons
10.The value of probable distribution	Successive and separate nactors of
	ased by a radical

tion n1. n2. n3 denotes about

[b] combined state

[d] degenerated state

CTION - B

LL the Questions.

iffs function.

- at theorem.

- depend on total pressure?
- tates and microstates.

tatistics.

- tion of a system.
- of equilibrium of energy.

of specific heat capacity of a solid.

G.T.N. ARTS COLLEGE (AUTONOMOUS) (Affiliated to Madurai Kamaraj University) Reg. No:

Course Title: Nano Physics Programme: M. Sc., Physics Course Code: 18PPHE21

END SEMESTER EXAMINATION - NOVEMBER 2019 (Accredited by NAAC with 'B' Grade) Date: 20.11.2019

Answer ALL the Questions.

SECTION - A

 $[10 \times 1 = 10]$

Time: 2.00p.m. to 5.00p.m.

Max. Marks:75

Choose the Correct Answer.

are used to detect contrast between areas of different chemical

Composition. [a] EBSD [b] BSE

2. Nanometer is in the order of

[c] CCD

[d] REM

3. X-ray lithography uses shorter wavelength about [c] 10^{-9} m [a] 10^{-7} m [d] 10⁻¹⁰ m [b] 10⁻⁸ m

4. Nanolithography refers to fabrication of [c] 0.3nm [a] 0.1nm [d] 0.4nm[b] 0.2nm scale structure.

[c] milli [a] nano

[b] micro

(d) metre

	Day Door of Physics
#	1000 350 John7
)	4
-	[OR] Dr. D. lalitha
	Mariton
-	Flection Minimum and visualization of samples in transmission
-e. exbana are railenon	11. a) Explain the preparation and view 1:
20. Explain the function	Answer ALL the Questions.
19. Describe the theoreti	SECTION – B $[5 \times 7 = 35]$
18. Explain the growth c	
17. Brief about the direc	
16. Describe the working	
	10. The meaning of pane is
,	[a] light
magnetic field.	microscopy is a type of microscopy
b) Explain the behav	Q Atomic 6
	[b] low thermal expansion
15. a) Write a note of ex	
b) Explain the applic	8. CNT have
	[c] diamond
(4, a) Explain are merry	[a] carbon
14 a) Evnlain the ability	is called
b) Explain nanotabi	
	7 The ball [d] FTIR
13. a) Explain the fabric	[c] SEV. [b] TEM
b) Explain the Work	[a] SEM
	6. Atomic force microscopy: (AFV 6.
12. a) Explain photonu	[c] impact
0) Dapamin in a later to	[4] Voltage
l b) Evolain the imag	fol
	9. Drop hamma

ging structure of scanning probe microscopy.

hography and its limitations.

[OR]

ring principle of electron beam lithography.

cation of nanostructure by milling process.

rication by scanning probe techniques.

[OR]

y of the cluster to react with other species.

[OR]

cation of carbon nanotubes in Fuel cells.

citons.

iour of type - II superconductor in an applied

[OR]

SECTION - C

 $[3 \times 10 = 30]$

nswer Any THREE Questions.

g principle of Scanning Electron Microscope.

st growth of AFM tips by chemical vapour deposition.

cal modelling of nanoparticles. f nanomaterial by molecular beam epitaxy method.

of FET type nanostructure.

8/8/19. Dr. 5. k. sewaras