	1				
	الكبقي				
Since 1964					

G.T.N. ARTS COLLEGE SELF FINANCE

Reg.

(AUTONOMOUS)

(Affiliated to Madurai Kamaraj University || Accredited with 'B' Grade by NAAC) END SEMESTER EXAMINATION - NOVEMBER - 2021

(UNDER OUTCOME BASED EDUCATION (OBE) PATTERN)

Programme : M.Sc. Physics	Date : 15.02.2022
Course Code : 20PPHC12	Time : 10:00 AM - 1:00 PM
Course Title : Classical Mechanics	Max. Marks : 60

Q. No.	SECTION - A (10 * 1 = 10 Marks) Answer ALL Questions		CO(s)	K - Level
1.	is given to a set of independent coordinates sufficient in number to describe completely the state of configuration of a dynamical system.		CO1	K1
	1.Hamiltonian Dynamics	2.D'Alembert's Principle		
	3.Lagrange's Dynamics	4.Generalized coordinates		
2.	If the constraints are expressed in the form of equations of the form $f(r_1, r_2,,t)=0$ then they are called		CO1	K2
	1.holonomic constraints	2.non-holonomic constraints		
	3.rigid body	4.momentum		
3.	Planets move in elliptical orbits with the sun at one	focus.	CO2	K1
	1.Law of periods	2.Law of areas		
	3.Law of orbits	4.Inverse square law		
4.	When $E=(V_{eff})_{min}$, the particle must move in a		CO2	K2
	1.linear	2.spherical		
	3.no motion	4.circle		
5.	$[Jy, p_x] = \$		CO3	K2
	1.0	2.py		
	3.pz	4p _z		
6.	The Lagrange's equations of motion for a system is motion.	equivalent to equations of	CO3	K2
	1.Maxwell's	2.Laplace		
	3.Newton's	4.Poisson		
7.	The energy possessed by a body, for doing work by called	virtue of its position, is	CO4	K1
	1.potential energy	2.kinetic energy		
	3.electrical energy	4.chemical energy		
8.	A spring having a spring constant k is loaded with a equal parts and one of these is loaded again with the		CO4	K2

	is 1.K/2 2.k	ζ						
	3.2K 4.K							
9.	The statement "If F (q, p, t) and G (q, p, t) are two integrals of motion. Then [F, G] is also an integral of motion" is called			K1				
	1.Legendre's transformations 2.J	acobi-Poisson's theorem						
	3.Hamilton's principle 4.F	Relativity theory						
10.	Calculate the velocity of body if its total energy is three times its rest energy		CO5	K2				
	1.0.54c 2.0).76c						
	3.0.94c 4.c							
Q. No.	o. SECTION - B (5 * 4 = 20 Marks) Answer ALL Questions		CO(s)	K - Level				
11. (a)	What is D'Alembert's principle?		CO1	K2				
	[OR]							
(b)	What do you mean by cyclic coordinates? Give an example.		CO1	K2				
12. (a)	State Bertrand's theorem.		CO2	K3				
			000	17.2				
(b)	Calculate the reduced mass of CO and HCl molecules.		CO2	K3				
13. (a)	Explain the concept of generating functions.		CO3	K1				
(b)	[OR] Define Lagrange Brackets.		CO3	K1				
14. (a)	How many generalized coordinates are needed to specify the motion of a rigid body?		CO4	K4				
	[OR]							
(b)	Describe the principal axes and principal moments of inertia of a rigid body.		CO4	K4				
15. (a)	Deduce sommerfield-wilson's rule in relation to action variable.		CO5	K2				
	[OR] Describe Lorentz transformation.		CO5	W2				
(b)	Describe Lorentz transformation.		CO5	K2				
Q. No.	SECTION - C (3 * 10 = 30 Marks) Answer any of 3		CO(s)	K - Level				
16.	Derive of Hamilton's equation from a variational principle.		CO1	K2				
17.	Examine the Viral theorem.		CO2	K3				
18.	Define Poisson's brackets and discuss their properties.		CO3	K2				
19.	Derive an expression for the rotational kinetic energy of a rigid body.		CO4	K5				
20.	Define Kepler's problem. Find out the solution by Hamilton-Jacobi method.			K2				
